4.7.2 Chemistry Paper 2 (233/2)

Qn No.	PDF Compressor Free Version Responses	Marks
1	(a) $ (i) C_n H_{2n} - alkyne_{\checkmark 1} $ $ (ii) C_n H_{2n} - alkene_{\checkmark 1} $	(1 mark) (1 mark)
	(b) (i) Solid because it is saturated. ✓1	(1 mark)
	(ii) I. CH ₂ OHCHOHCH ₂ OH ✓ 1	(1 mark)
	II. $CH_3(CH_2)_{16}COONa$ ✓ 1	(1 mark)
	III. Cleaning agent /.cleansing agent ✓ 1	(1 mark)
		(1 mark)
	(c) (i) Calcium carbide $\checkmark \frac{1}{2}$ and water. $\checkmark \frac{1}{2}$ (ii) $CaC_{2(s)} + H_2O_{(s)} \rightarrow Ca(OH)_{2(aq)} + C_2H_{2(g)} \checkmark 1$	(1 mark)
	 (d) (i) When many unsaturated molecules called monomers combine to form a giant / macro molecule of high relative molecular mass called a polymer. ✓ 1 	(1 mark)
	(ii) H CH3 H CH3 H CH8 COOCH3 H COOCH5 H COOCH5	(1 mark)
	 Used as a glass substitute; ✓ 1 Electronic instruments housing; Wind screen; Safety glasses; vehicle headlamps; Bullet proofing. 	(1 mark)

(iv)	T
 PDF Compressor fires when burned affecting human life. ✓ ½ They are non-biodegradable hence pollutes the environment. ✓ ½ Accelerates fires when burned / highly flammable. 	
(Any two correct @½ mk)	(1 mark)
 (i) G√ 1 - Contains delocalized electrons√ 1 present in solid and molten state. (ii) In solid state, the ions are rigidly held in position and cannot move, hence will not conduct.√ 1 	(2 marks)
In molten/aqueous state, the ions are mobile and will be able to conduct electric	
current. ✓ 1	
(b) (i) •The blue electrolyte fades and finally changes from blue to colourless. ✓¹/₂	(2 marks)
 Effervescence / bubbles of a colourless gas. ✓ ½ 	
 A brown deposit forms on the cathode. ✓ ½ 	(1½ marks)
(ii) $4OH^{-}(aq) \rightarrow O_{2(g)} + 2H_2O_{(l)} + 4e^{-} \checkmark 1$	(1 mark)
(iii) The pH will change from 6 to less than 4 i.e. the resulting solution will be acidic. ✓	
1/2	(½mark)
(c) With copper electrodes:	
Anode will go into solution as copper ions hence it decreases in mass/size. ✓ ½	(½ mark)
Brown deposit forms at the cathode hence the cathode increases in mass. ✓ 1/2	(½mark)
(d) (i) This is the coating of an article / object with another metal by electrolytic method./ electrolysis. ✓ 1	(1 mark)

(iv) Quantity of electricity = $\frac{3}{2}$ x 60 x 60 x 0.6 \checkmark 1 = 3240 coulombs. \checkmark 4 108g Ag = 96,500 coulombs ? = 3240 coulombs $= \frac{108 \times 3240}{96,500} \checkmark 1$ = 3.626g \checkmark ½ OR $= \frac{0.6 \times 1.5 \times 60 \times 108}{96,500} \checkmark 2\%$ (3 marks)	(ii) To prevent articles from rusting and to make them attractive. PDF Compressor Free Version		
$= 3240 \text{ coulombs.}^{\checkmark \frac{1}{4}}$ $108g Ag = 96,500 \text{ coulombs}$ $= \frac{108 \times 3240}{96,500} \times 1$ $= 3.626g \times \frac{1}{4}$ OR $= \frac{0.6 \times 1.5 \times 60 \times 108}{96,500} \times 2\frac{1}{4}$ $= 3.626 \text{ g} \times \frac{1}{4}$ (3 marks)		(1 mark)	
$= 3240 \text{ coulombs.}^{\checkmark \frac{1}{4}}$ $108g Ag = 96,500 \text{ coulombs}$ $= \frac{108 \times 3240}{96,500} \times 1$ $= 3.626g \times \frac{1}{4}$ OR $= \frac{0.6 \times 1.5 \times 60 \times 108}{96,500} \times 2\frac{1}{4}$ $= 3.626 \text{ g} \times \frac{1}{4}$ (3 marks)	(iv) Quantity of electricity = $\frac{3}{2}$ x 60 x 60 x 0.6 \checkmark 1		
108g Ag = 96,500 coulombs ? = 3240 coulombs $= \frac{108 \times 3240}{96,500} \checkmark 1$ $= 3.626g \checkmark \frac{1}{2}$ OR $= \frac{0.6 \times 1.5 \times 60 \times 108}{96,500} \checkmark \frac{2}{2}$ $= 3.626 g \checkmark \frac{1}{2}$ (3 marks)			
108g Ag = 96,500 coulombs ? = 3240 coulombs $= \frac{108 \times 3240}{96,500} \checkmark 1$ $= 3.626g \checkmark \frac{1}{2}$ OR $= \frac{0.6 \times 1.5 \times 60 \times 108}{96,500} \checkmark \frac{2}{2}$ $= 3.626 g \checkmark \frac{1}{2}$ (3 marks)	2240 - 1 - 1 - 4 1/4		
? = 3240 coulombs = $\frac{108 \times 3240}{96,500} \times 1$ = 3.626g $\frac{7}{2}$ OR = $\frac{0.6 \times 1.5 \times 60 \times 108}{96,500} \times 2\frac{1}{2}$ = 3.626 g $\frac{7}{2}$ (3 marks)	= 3240 coulombs. * **		
? = 3240 coulombs = $\frac{108 \times 3240}{96,500} \times 1$ = 3.626g $\frac{7}{2}$ OR = $\frac{0.6 \times 1.5 \times 60 \times 108}{96,500} \times 2\frac{1}{2}$ = 3.626 g $\frac{7}{2}$ (3 marks)	$108g Ag \equiv 96,500 \text{ coulombs}$		
96,500 = $3.626g \checkmark 1/2$ OR $= \frac{0.6 \times 1.5 \times 60 \times 108}{96,500} \checkmark 2\frac{1}{2}$ $= 3.626 g \checkmark \frac{1}{2}$ (3 marks)			
96,500 = $3.626g \checkmark 1/2$ OR $= \frac{0.6 \times 1.5 \times 60 \times 108}{96,500} \checkmark 2\frac{1}{2}$ $= 3.626 g \checkmark \frac{1}{2}$ (3 marks)			
OR $= \frac{0.6 \times 1.5 \times 60 \times 108}{96,500} \checkmark 2\frac{1}{2}$ $= 3.626 \text{ g} \checkmark \frac{1}{2}$ (3 marks)	$=\frac{108 \times 3240}{96.500} \times 1$		
OR $= \frac{0.6 \times 1.5 \times 60 \times 108}{96,500} \checkmark 2\frac{1}{2}$ $= 3.626 \text{ g} \checkmark \frac{1}{2} \tag{3 marks}$			
$= \frac{0.6 \times 1.5 \times 60 \times 108}{96,500} \checkmark 2\frac{1}{2}$ $= 3.626 \text{ g} \checkmark \frac{1}{2}$ (3 marks)			
= $3.626 \mathrm{g} \checkmark \frac{1}{2}$ (3 marks)			
= $3.626 \mathrm{g} \checkmark \frac{1}{2}$ (3 marks)			
= $3.626 \mathrm{g} \checkmark \frac{1}{2}$ (3 marks)	$=\frac{0.6 \times 1.5 \times 60 \times 108}{\sqrt{2}}$		
(3 marks)			
	3.020 g · 72	(3 marks)	
3 (a) (i) To remove exide level on the most 1 / 1	3 (a) (i) To remove evide lever on the model (1)		
3 (a) (i) To remove oxide layer on the metal. ✓ 1 (1 mark)	3 (a) (1) To remove oxide layer on the metal. • 1	(1 mark)	
(ii) Beaker I:	(ii) Beaker I:		
 Bubbles of a colourless gas / effervescence; ✓1 			
• Solution turns green; ✓ (1 mark)		(1 mark)	
 the size of iron rod decreases√. 	• the size of iron rod decreases√.		
Beaker II: (1 mark)	Beaker II:	(1 mark)	
• The solution remained colourless.	• The solution remained colourless. 1	(1 mark)	
No bubbles/effervescence	No bubbles/effervescence		
(iii) Beaker I:	(iii) Beaker I:		
Iron is above hydrogen in the reactivity			
Series therefore will react with the acid to form iron(II) sulphate (FeSO ₄) (1 mark)	Series therefore will react with the acid to form iron(II) sulphate (FeSO ₄)	(1 mark)	
which is green and produces hydrogen gas. ✓ 1			

	PD	F Compressor Free Version		
	OR			
	Iron is more reactive than hydrogen hence it reacts with sulphuric(VI) acid to			
	produce hydrogen gas and iron(III) sulphate which is green.			
	Beaker II: Copper is below hydrogen hence no reaction will take place. ✓ 1			
(b)	b) (i) To dry hydrogen gas. ✓ 1			
	(ii) Calcium oxide /anhydrous calcium chloride /silica gel. ✓ 1			
	(Accept the formulae) (Any one correct @ 1mk)			
	(iii) (iv) (v)	To suck the products of the burning into the boiling tube. ✓ 1 Water ✓ 1 Boil the liquid. If it boils at 100°C/ constant, then this confirms that it is water. ✓ 1	(1 mark) (1 mark) (1 mark)	
		OR		
	(vi)	Freeze the liquid. If it freezes at 0°C, then this confirms that it is water // Determine density of liquid, if it is 1g/cm³ then it is water. (Accept any one correct @ 1mk) Dry -The substance is free from moisture. ✓ 1	(2 marks)	
		Anhydrous - The substance has lost its water of crystallization through heating,		
		to form anhydrous substances. ✓ 1		

473				,
(i) W	is acidic. ✓1		×	
3.6		Free Version		(1 mark)
(ii) Su	lphuric(VI) ac	id, H_2SO_4 . \checkmark 1		(1)
				(1 mark)
(iii) (II) - Magnesiun	n sulphate. ✓1		(1 mark)
(II)	I) - Sodium su	phate. ✓1		
				(1mark)
(iv) Ba	$a^{2+}(aq) + SO$	$_{4}^{2^{-}}(aq) \rightarrow BaSO_{4(s)} \checkmark 1$		(1 mark)
			i i	
(b) (i)			¥	
. , . ,				
(I)				
	\mathbf{V}	Cl		
Mass (g)	19.75	80.25		
DAM	27	25.5		
RAM	27	35.5		
16-1	19.75	80.25	* * w	
Moles	27	$\frac{80.25}{35.5}$ $\checkmark \frac{1}{2}$		
	0.73	2.24		(2 marks)
÷ smaller	$\frac{0.73}{0.73}$	$\frac{\frac{2.26}{0.73}}{3} \checkmark \frac{1}{2}$		
	1	3 ✓ 1/2		
Empirical	- VCl ₃ , ½			
			•	
(II)	Molar mass =			
	Empirical ma	ss $VCl_3 = 27 + 35.5 \times 3$		
		= 27+ 106.5		
		= 133.5 √ ½		
(Emnir	ical mass) n =	molecular mass		
	3.3n = 267	molecular mass		
100	$n = 267 \div 1$	33.5		
	$n = 2 \checkmark 1$			
$(VCl_3)_2$	$_{2}=V_{2}Cl_{6}$			(2 marks)
	Service Francis			

:. Molecular formula = $V_2Cl_6 \checkmark \frac{1}{2}$

PDF Compressor Free Version (ii)

(1 mark)

(iii)
$$VCl_3(s)+3NaOH(aq) \longrightarrow V(OH)_3(s) + 3NaCl(aq) \checkmark$$

(1 mark)

OR

$$V_2Cl_6(s)+6NaOH(aq) \longrightarrow 2V(OH)_3(s) + 6NaCl(aq)$$

OR

 $V_3^{3+} + 3(OH)_{3+} \longrightarrow V(OH)_{3+}$

(i) PDF Compressor Free Version

(3 marks)

Workability - 1mark
Measurement of the gas- 1 mark
Labeling of reactants and gas - 1mark

(ii)
$$Mg_{(s)} + 2HCl_{(aq)} \rightarrow MgCl_{2(aq)} + H_{2(g)} \checkmark 1$$

(iii)
$$Mg_{(s)} + 2HCl_{(aq)} \rightarrow MgCl_{2(aq)} + H_{2(g)}$$

Moles of Mg = $\frac{0.048}{24} = 0.002$ \checkmark

(1 mark)

Moles of Mg = Moles of $H_2 = 0.002\checkmark$

Volume of hydrogen gas = 0.002 × 0.048 litres ✓ 1/2

 $= 0.048 \text{dm}^3 \checkmark \frac{1}{2}$

(iv) Moles of HCl =
$$2 \times 0.002 \checkmark \frac{1}{2} = 0.004. \checkmark \frac{1}{2}$$

(2 marks)

$$\frac{\text{volume} \times 0.1}{1000} = 0.004 \checkmark \frac{1}{2}$$

Volume =
$$\frac{0.004x1000}{0.1} \checkmark \frac{1}{2}$$

$$= 4/0.1 = 40 \text{cm}^3 \checkmark 1$$

(3 marks)

6. (a) Sulphur(IV) oxide PDF Compressor Free Version	(1 mark)
(b) Oxygen ✓ ¹and nitrogen(IV) oxide.✓ ¹	(2 marks)
(c) Lead(II) oxide/ PbO. ✓ 1	(1 mark)
(d) Lead. ✓ 1	(1 mark)
(e) (i) Grey beads formed at cathode; ✓ 1	
Bubbles/ effervescence.of a colourless gas at the anode ✓ 1	(2 marks)
(ii) $2O^{2-}(1) \longrightarrow 2O_2(g) + 4e^{-\sqrt{1}}$ (f) $Pb_{(aq)}^{2+} + 2I^{-}(aq) \to PbI_2(s)$. \checkmark 1	(1 mark) (1 mark)
(g) A white precipitate ✓ ½ was formed which dissolves in excess to form a	(1 mark)
colourless solution. ✓ ½	
(h) (i) Displacement / Redox reaction ✓ 1	(1 mark)
(ii) $Pb^{2+}(aq) + Zn(s) \to Pb(s) + Zn^{2+}(aq)$. \checkmark ¹	(1 mark)

(ii) It would have no effect on the curve as the quantity of bismuth does not affect PDF Compressor Free Version half-life. 1	(1 mark)	
(b) (i) Applications in medicine		
Sterilizing surgical instruments.		
Destroying cancerous tissues during ✓ 1		
radiotherapy.		
Provide power to the heart pace setters.	(1 mark)	
(Any one correct @ 1mk)	(Tinark)	
(ii) Applications in agriculture		
Monitor photosynthesis and other related processes.		
• Preservation of foodstuffs, by exposing ✓1		
Micro-organisms to gamma rays.		
Rate of absorption of a fertilizer by the plant.		
(Any one correct @ 1mk)	(1 mark)	
(iii)Applications in Tracers		
 Detecting leakages in underground water or oil pipes. ✓ 1 	(1 mark)	
(iv)Applications in Nuclear power stations.		
To generate electricity. ✓ 1		
(d) Dangers of radioactivity		
 Long term exposure causes genetic mutation; ✓ 1 		
• Radioisotopes can be used as weapon of mass ✓ 1		
Destruction;		
Causes skin cancer;	(2 marks)	
When tested causes environmental pollution.		
(Any 2 correct @ 1mk)		