1 #### REPUBLIQUE DU CAMEROUN Paix - Travail – Patrie MINESEC/OBC PDF Compressor-Free Version PROBATOIRE F Session 201 & Spécialité: F3 Durée : 04H Coef : 04 Epreuve écrite d'admissibilité # CIRCUITS ELECTRONIQUES, INDUSTRIELS ET NUMERIQUES Documents autorisés : aucun Nombre de pages : 04 Nombre de parties : 03 Epreuve notée sur: 40 #### I TECHNOLOGIE 1; (8 points) - Un résistor porte les indications suivantes : 150KΩ, 1/4W, 10%. Donner la signification de chaque indication. Ce résistor est remplacé par une résistance au carbone équivalente. En déduire le code de couleur correspondant. (2pts) - Représenter le symbole d'une diode à jonction, d'une diode électroluminescente et d'une photodiode. (1,5pt) - 3. A l'aide d'un ohmmètre, préciser l'état des polarités d'une diode à jonction : - a) lorsqu'elle est fonctionnelle; (0,25pt) b) lorsqu'elle est défectueuse. (0,25pt) 4. Un document technique donne les caractéristiques suivantes d'un composant électronique : | Туре | I _{ZM} (mA) | V _{ZT} (V) | I _{ZT} (mA)) | P
(W) | |--------------|----------------------|---------------------|-----------------------|----------| | BZX 85 C 5V1 | 200 | 5,1 | 45 | 1,3 | a) identifier ce composant ; (0,5pt) (1,5pt) - définir les indications suivantes : BZX 85 C 5V1; I_{ZM}; P ; - c) dessiner le symbole de ce composant et donner un domaine d'application. (0,5pt) - Donner deux avantages et deux inconvénients de la technologie CMOS par rapport à la technologie TTL. (1pt) - 6. Un compteur binaire modulo 8 a comme état initial 000 ; Quel sera son contenu après 21 impulsions ? (0,5pt) ## II CIRCUITS ANALOGIQUES '(18 points) #### 2.1 Courant Alternatif (6 points) On considère le circuit de la figure1 ci-dessous : On donne : R1 = R2= R3 = 4Ω ; C = $39.8\mu F$; L1 = 1.274mH ; L2 = 0.637mH ; f=1KHz. | 2.1.1 | Déterminer les impédances complexes de chacune des 3 branches du | (1,5pt) | |-------|--|---------| | 212 | circuit. Déterminer l'impédance complexe équivalente du circuit. | (1,5pt) | | .213 | Déterminer l'intensité complexe 12 dans la résistance R2 sachant que | (1,5pt) | | | l'intensité complexe dans R1 est $\underline{I}_1 = 1.25 \angle 0^\circ$ A. Déterminer la tension complexe $\underline{\underline{E}}$. | (1,5pt) | # 2.2 Transistor bipolaire en régime statique et dynamique (8 points) Dans le montage amplificateur de la figure 2 ci-dessous, On donne : R_1 = 3,9K Ω ; R_2 =2.2K Ω ; R_C = 180 Ω ; R_E = 390 Ω ; R_L = 500 Ω ; β = 150. ## A - Etude statique Le point de repos du transistor est défini par $V_{BE0} = 0.7V$; $I_{B0} = 132\mu A$. 2.2.1. Calculer le courant collecteur I_{C0}. (1pt) 2.2.2. En utilisant le théorème de Thévenin, déterminer les éléments (R_B et E_B) du générateur de Thévenin équivalent au circuit de polarisation à la base du transistor. (2pts) 2.2.3. En déduire la tension d'alimentation V_{CC}. (1pt) ### EP-DE Grampresson Free Version Les paramètres dynamiques du transistor au point de repos considéré ont pour valeurs : $r = h_{11} = 1K\Omega$; $h_{21} = 150$; $h_{12} = 0$; $h_{22} = 0s$. - 2.2.5. Donner la désignation et le rôle des condensateurs C_B et C_E. (1pt) - 2.2.6. Donner le schéma équivalent en petits signaux du montage. (1,5pt) - 2.2.7. Identifier la configuration (Emetteur Commun, Collecteur Commun ou Base Commune) de ce montage amplificateur à transistor bipolaire. (0,5pt) ## 2.3 Amplificateur opérationnel (4 points) On considère le montage ci-dessous dans lequel l'amplificateur opérationnel est supposé parfait : On donne : Ve = 0,5V ; R_1 = 1K Ω ; R_2 = 4K Ω ; R_3 = 10K Ω ; - 2.3.1 Identifier le mode de fonctionnement de l'amplificateur opérationnel. Justifier la réponse. 2.3.2 Calculer l'intensité du sourcet le chile tourier le la face de fa - 2.3.2 Calculer l'intensité du courant l₁ et la tension de sortie Vs. (1,5pt - 2.3.3 En déduire les intensités ls et l₀. (1,5pt) # III CIRCUITS NUMERIQUES (14 points) # 3.1 Logique combinatoire (6,5 points) Le schéma suivant est celui d'un circuit comparateur logique : 3.1.1 Donner les équations des sorties S_1 ; S_2 et S_3 . (1,5pt) 3.1.2 Simplifier ces équations et mettre S₂ sous la forme d'une somme de produit. (2pts) 3.1.3 Compléter la table de vérité ci-contre : (1,5 pt) | A | В | S ₁ | S ₂ | S ₃ | |---|---|----------------|----------------|----------------| | 0 | 0 | | | | | 0 | 1 | | | | | 1 | 0 | | | | | 1 | 1 | | | | 3.1.4 Déduire la fonction des différentes sorties S1, S2 et S3. (1,5 pt) #### 3.2 Logique Séquentielle (7,5 points) On réalise un compteur à l'aide de 2 bascules J-K actives sur front montant. La séquence de comptage de ce compteur est donnée ci-dessous : | | Nombre
Décimal | Q ₁ | Q ₀ | |---|-------------------|----------------|----------------| | - | 0 | 0 | 0 | | | 1 | 0 | 1 | | | 2 | 1 | 0 | | | 3 | 1 | 1 | Q₁ et Q₀ sont les sorties respectives des bascules (J₁-K₁) et (J₀-K₀). | 3.2.1 | Dresser la table de vérité et la table de transition de la bascule JK. | /4 F-1) | |-------|--|---------| | 3.2.2 | En déduire la table de transition de la pascule JN. | (1,5pt) | | 3 2 3 | En déduire la table de transition de ce compteur. | (1pt) | 3.2.3 Ecrire les équations des entrées de chaque bascule. (3pts) 3.2.4 Donner le schéma structurel du compteur. (3pts)