THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education

233/PF Compressor Free CHEMISTRY (THEORY)

- Paper 2

Nov. 2018 - 2 hours

Name	Index Number
Candidate's Signature	Date

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer ALL the questions in the spaces provided.
- (d) KNEC mathematical tables and silent non-programmable electronic calculators may be used.
- (e) All working MUST be clearly shown where necessary.
- (f) This paper consists of 14 printed pages.
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (h) Candidates should answer the questions in English.

For Examiner's Use Only

Question	Maximum Score	Candidate's Score
1	14	
2	14	
3	13	
4	11	
5	15	
6	13	
Total Score	80	

© 2018 The Kenya National Examinations Council 233/2

The diagram in Figure 1 shows some natural and industrial processes. Study it and answer the 1. PLATIGO IN PURIOS Free Version

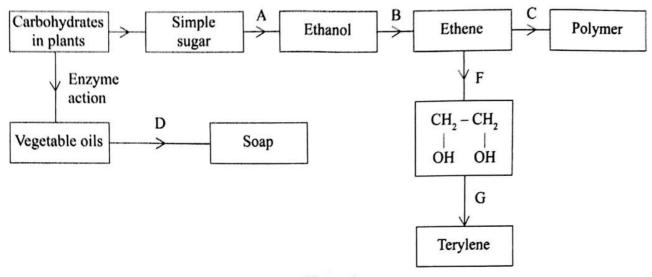


Figure 1

(a)	Identify the processes labelled: (2 ma				
	Α				
	В				
	C		•••••		
	D				
(b)	State	the reagents and conditions required for processes B and D.			
	(i)	Process B:			
		Reagent	(1 mark)		
		Conditions	(1 mark)		
	(ii)	Process D:			
		Reagent	(1 mark)		
		Conditions	/1		

(2 marks)

	(iii)	Describe how process D is carried out.	(2 marks)
PD	F Co	mpressor Free Version	
	(iv)	State two additives used to improve the quality of soap.	(1 mark)
	2		,
(-)	C4-4-	Å.	
(c)	State	the reagents required in steps F and G.	
	(i)	F	(1 and s)
	(1)	F	(1 mark)
	(ii)	G	(1 mark)
	()		(1 mark)
	(iii)	Draw the structure of terylene.	(1 mark)
		A 2 2 10 10 10 10 10 10 A 10 A 10 A 10 A	,
			••••••
(4)	(i)	Name the polymer formed in step C.	(1 1)
(d)	(i)	Name the polymer formed in step C.	(1 mark)
			••••••
	(ii)	State one disadvantage of the polymer formed in (d) (i).	(1 mark)
	. ,		(Timark)
			•••••

2. Figure 2 is a section of the periodic table. Study it and answer the questions that follow. The PDEtters deprecently acts in symbols of elements

G				
			I	v
K	L	М		
J				

Figure 2

	(a)	(i)	Select elements which belong to the same chemical family. (1	mark)
Ž		(ii)	Write the formulae of ions for elements in the same period. (1	mark)
	(b)		first ionisation energies of two elements ${\bf K}$ and ${\bf M}$ at random are 577 kJ/mol .	ol and
		(i)	Write equations for the 1 st ionisation energies for elements K and M and in their energies.	ndicate mark)

		(ii)	Explain the answer in (b) (i). (1	mark)
		(iii)	Write the formula of the compound formed when L and I react. (1	mark)
8				

PD	F Con	Give one use of apressor Free	f element V. e Version		(1 mark)
					ĝ
(c)	(i)	State another gr	roup that G can be placed	in Figure 2. Explain. (2 marks)

	(ii)	How do the rea	ctivity of elements J and	K compare? Explain.	2 marks)
(d)	(i)		d M form chlorides. Con ch chloride and state the n	ature of the solutions.	riting the 2 marks)
		Element	Formula of chloride	Nature of chloride solution	7 •
		L			
		M			
	(ii)	The chloride o point. Explain.	f element M vapourises	easily while its oxide has a high	n melting (2 marks)
					•••••

3. PD(F) Complete Table 1 by indicating the observations, type of permanent or temporary change and name of new compound formed.

Table 1

Experiment	Observations	Type of Change	Name of product
(i) Heat candle wax strongly in a test tube.			
(ii) Anhydrous copper(II) sulphate is left exposed overnight			
(iii) Iron wool is soaked in tap water for two days			

(6 marks)

(b) Use the set-up in Figure 3 to answer the questions that follow. The flask was covered with a cloth that had been soaked in ice-cold water.

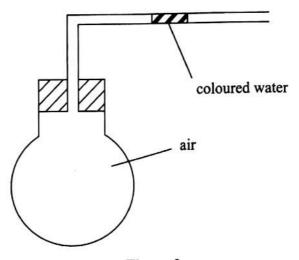


Figure 3

(i)	State the observation made on the coloured water. Explain.	(2 marks)	
(ii)	Name the gas law illustrated in Figure 3.	(1 mark)	

(c) Use the standard electrode potentials in **Table 2** to answer the questions that follow. PDF Compressor Free Version

Table 2

Half-cell	$\mathbf{E}^{ heta}/\mathbf{Volts}$
Z+/Z	+0.80
V ²⁺ /V	-0.40
W+/W ₂	0.00
Y ²⁺ /Y	-2.87
U+/U	+1.90

(i)	Write hydro	e the half-cell representation for the element whose electrode pogen.	otential is for (1 mark)
(ii)	Arrar agent	nge the elements in order of reducing power, starting with the wea	kest reducing (1 mark)
(iii)	I	Select two half cells which combine to give a cell with the lea	(1 mark)
	II	Calculate the e.m.f of the half cells identified in (iii) I.	(1 mark)

•	reacti	on took	ent was carried out to prepare crystals of magnesium sulphate. Excess the state of the crystallite sulphuric(VI) acid in a beaker and warmed until place. The mixture was filtered and the filtrate evaporated to saturation, tals to form.		
	(a)	(i)	Write an equation for the reaction.	(1 mark)	
		(ii)	Explain why excess magnesium powder was used.	(1 mark)	
		(iii)	State how completion of the reaction was determined.	(1 mark)	
		(iv)	What is meant by a saturated solution?	(1 mark)	
		(v)	Explain why the filtrate was not evaporated to dryness.	(2 mark)	

PD rele	en bleaching powder, CaOCl ₂ , is treated with dilute nitric(V) acid, chlorine gas is used president to determine the chlorine content of various samples leaching powders and liquids.
(i)	Write an equation for the reaction of nitric(V) acid with bleaching powder. (1 mark)
(ii)	Calculate the volume of chlorine produced when $10 \mathrm{g}$ of $\mathrm{CaOCl_2}$ is treated with excess nitric(V) acid. (Ca = 40.0; O = 16.0; Cl = 35.5; 1 mole of gas occupies 22.4 dm ³ at s.t.p) (3 marks)
(c) Apa	art from use of chlorine gas in bleaches and water treatment, state two other uses of orine gas. (1 mark)
·····	

5. The diagram in Figure 4 was used to prepare hydrogen chloride gas which was passed PDF Compressor repression

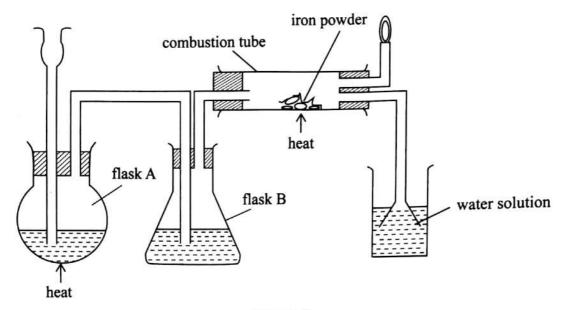


Figure 4

(1)	Give a pair of reagents that will produce hydrogen chloride gas in ha	(2 marks)
(ii)	Name the substance in flask B.	(1 mark)
(iii)	State the observation made in the combustion tube.	(1 mark)
(iv)	Write an equation for the reaction in the combustion tube.	(1 mark)
(v)	Describe a chemical test for hydrogen chloride gas.	(1 mark)

(b)	(i) DF C	Identify the gas that burns a ompressor Free Version		(1 mark)
	(ii)	Explain why the gas in (b) (i) is burned.	(1 mark)
(c)	Give	reasons why excess hydrogen		(2 marks)
(d)	State	what will be observed when t	he reaction in the combust	ion tube is complete. (1 mark)
(e)	methy	her experiment was carried o ylbenzene and water in separ itmus papers and marble chip	ate beakers. The resulting	
	(i)	Write the observations made	e in the following table.	
		Solution of hydrogen chloride gas in:	Blue litmus paper	Marble chips
		Water		
		Methylbenzene		

(2 marks)

	PDF Compre	Explain the observations in (e) (i). essor Free Version	(2 marks)
<u> </u>			
6.	(a) In Ke	nya, sodium carbonate is extracted from trona at Lake Magadi.	
	(i)	Give the formula of trona.	(1 mark)
			•••••
	(ii)	Name the process of extracting sodium carbonate from trona.	(1 mark)
	×		
e e			

(b) The flow chart in Figure 5 summarises the steps involved in the production of sodium carbonate. Use PiDtb answepthespostions the steps involved in the production of sodium carbonate.

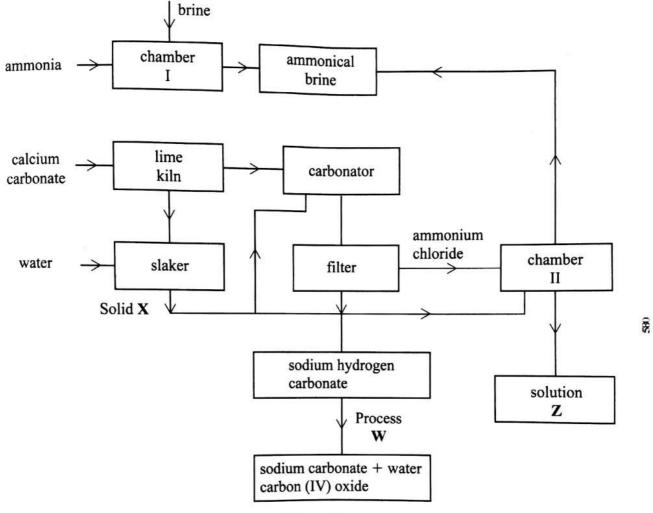


Figure 5

(i)	Name the process illustrated in Figure 5. (1 mar.	k)	
(ii)	Identify the starting raw materials required in the production of sodium carbonat (2 mark		
		 Alfo	

Kenya Certificate of Secondary Education, 2018 233/2

(iii) DF Comp i	Write equations for the two reactions that occur in the carbonator. ressor Free Version	(2 marks)
(iv)	Name two substances that are recycled.	(1 mark)
(v)	Identify:	
	Solid X;	(1 mark)
	Process W.	(1 mark)
(vi)	Write an equation for the reaction that produces solution Z.	(1 mark)
(vii)	Apart from softening hard water, state two other uses of sodium carb	onate.
,		(2 marks)
		••••••

THIS IS THE LAST PRINTED PAGE