THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education

232/1 - PHYSICS PDF Compressor Free Version (THEORY)

- Paper 1

Nov. 2018 - 2 hours

Name	Index Number
Candidate's Signature	Date

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) This paper consists of two sections A and B.
- (d) Answer all the questions in sections A and B in the spaces provided.
- (e) All working must be clearly shown.
- (f) Silent non-programmable electronic calculators may be used.
- (g) This paper consists of 15 printed pages.
- (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (i) Candidates should answer the questions in English.

For Examiner's Use Only

Section	Questions	Maximum Score	Candidate's Score
Α	1–13	25	
	14	12	
	15	11	
В	16	9	
	17	11	
	18	12	
	Total Score	80	

© 2018 The Kenya National Examinations Council 232/1

SECTION A: (25 marks)

PDF Compressor Free Wersianestions in this section in the spaces provided.

1.	State the reason why an object on earth has a higher weight than on the moon.					

2. Figure 1 shows the position of a students eye while measuring the length of a wooden block using a metre rule.

Figure 1

Determine the length of the block as viewed by the student. (1 n	nark)
Describe how the knowledge of the oil drop experiment may be used to estimate the area of pillage from a ship in the sea assuming the surface water is not disturbed. (3 magnetic pillage from a ship in the sea assuming the surface water is not disturbed.	
	•••••

772

3.

4. **Prique** 2 shows an instrument used to measure atmospheric pressure.

Figure 2

State with a reason the modification that would be required in a sin	
to be replaced with water.	(2 marks)
It is observed that a drop of milk carefully put into a cup of water t	urns the water white after
some time. State the reason for this observation.	(1 mark)

5.

PDF Compressor Free Version Properties of a bimetallic strip after it was cooled below room temperature.

Figure 3

	Explain why the strip curved as shown.	(2 marks)
7.	A wooden cube of side 0.5 m floats in water fully submerged. Determine the	
	(density of water = 1 gcm^{-3}).	(2 marks)

8. Figure 4 shows a stone whirled in a vertical circle.

Figure 4

On the axes provided, sketch a graph of tension against time as the stone moves through point PADB, Complessor Free Version (3 marks)

9. Figure 5 shows a ball spinning as it moves.

Figure 5

(a)	On the diagram, sketch the path followed by the ball as it moves.	(1 mark
(b)	Explain why the ball takes that path.	(3 marks

A095

10. Figure 6 shows the relationship between volume and pressure for a certain gas.

PDF Compressor Free Version

772

Figure 6

Name the law that the gas obeys.	(1 mark)

11. Figure 7 shows an L-shaped wooden structure.

260

Figure 7

On the diagram, construct appropriate lines to show the position of the centre of gravity for the structure. (2 marks)

12. Phylice annives the graphe of extension against force for a certain helical spring.

Figure 8

On the same diagram sketch the graph of extension against force for a spring with a lower value of spring constant. (1 mark)

13.	State two ways in which a mercury based thermometer can be modified to read very small			
	temperature changes.	(2 marks)		

4095

PDF Compressor Free Version SECTION B (55 marks)

Answer all the questions in this section in the spaces provided.

14.	(a)	State two differences between boiling and evaporation.	(2 marks)
	(b)	State three ways in which loss of heat by conduction is minimised	in a vacuum flask. (3 marks)
3),			
	(c)	In a certain experiment, 50 g of dry steam at 100 °C was directed in	nto some crushed ice
	(0)	at 0°C. (Latent heat of vaporisation of water is 2.26×10^6 Jkg ⁻¹ , l for ice is 3.34×10^5 Jkg ⁻¹ and specific heat capacity of water is 4.	atent heat of fusion
		Determine the:	
		(i) quantity of heat lost by steam to change to water at 100 °C.	(2 marks)
		(ii) quantity of heat lost by water to cool to 0°C.	(2 marks)
		(iii) mass of ice melted at 0 °C.	(3 marks)

15.	PDF	Compressor, Ernet Versionotion.	
-----	-----	---------------------------------	--

(1 mark)

(b) A wooden block resting on a horizontal bench is given an initial velocity u so that it slides on the bench for a distance x before it stops. Various values of x are measured for different values of the initial velocity. **Figure 9** shows a graph of u² against x.

Figure 9

Determine the slope S of the graph.

A095

(i)

772

ii)	Determine the value of k given that $u^2 = 20$ k d where k is a frictional constant for
, , , , , , , , , , , , , , , , , , ,	the surface. (2 marks)

(3 marks)

121 001	mpressortale eath a reason what happens to the value of k when the re	•
	bench surface is reduced.	(2 marks
(c)	An object is thrown vertically upwards with an initial velocity of 30 m	ns ⁻¹ . Determine its
	maximum height (acceleration due to gravity g is 10 ms ⁻²).	(3 marks)

16. P	DF C	ompressora	rees Versiono A	of	energy to	o lift a	load	of 2.0 ×	10 ⁴ N in	4 s.
-------	-------------	------------	-----------------	----	-----------	----------	------	----------	----------------------	------

(i)

(b)

(1)	Determine the;							
	I	power developed by the crane,	(2 marks)					
	II	height to which the load is lifted,	(2 marks)					
	Ш	efficiency of the crane whose motor is rated $2.5 \times 10^4 \text{W}$.	(2 marks)					
(ii)	State	e two forms of energy transformation that lead to the crane's ine	efficiency. (2 marks)					
		ropped from the top of a building to the ground. On the axes protential energy against time for the stone.	ovided, sketch (1 mark)					
		tential						
		nergy (N)						

Time (s)

A095

17.	1 (a)01	Stan	SPAsearseprincipie of transmission of pressure in liquids.	(1 mark)
	(b)	Figu	are 10 shows heights of two immiscible liquids X and Y in a U-tube (dra	awn to scale).
			X	
			Figure 10	
		(i)	State with a reason which of the two liquids X and Y has a higher de-	nsity. (2 marks)
		(ii)	Determine the value of h.	(2 marks)

		or essent three Versian of liquid Y is ρ , write down an expression for to of liquid X in terms of ρ .	(2 marks
(c)	(i)	With the aid of a diagram, describe how a liquid may be siphoned fro container to another using a flexible tube.	m one (3 marks

ME SE

A095

	1BDF @pr	npotess owo Fareau Messian must be kept constant in order to verify Boyle's	s law. (2 marks)
	(b)	An air bubble at the bottom of a beaker full of water becomes larger as i surface. State the reason why;	t rises to the
		(i) the bubble rises to the surface,	(1 mark)
DI.		(ii) it becomes larger as it rises.	(1 mark)
11			
	(c)	State two assumptions made in explaining the gas laws using the kinetic	theory of gases. (2 marks)

A095

PDF Compressor Free Version

Figure 11

	(i)	State with a reason which one of the laws may be verified using the set	t up. (2 marks)				
	(ii)	State what the student left out in the diagram of the set up.	(1 mark)				
e)	The volume of a fixed mass of a gas reduced from 500 cm ³ to 300 cm ³ at constant						
	press	sure. The initial temperature was 90 K. Determine the final temperature.	(3 marks)				

THIS IS THE LAST PRINTED PAGE.

772

BLANK PAGE

