PDF Compressor Free Version .. (a) Draw a labelled diagram showing the atomic structure of Use of only dats or 2 915032 12nv2 Electrons V 12PV J'ray a whats tote (b) (a) (c) 6 O man-The atomic number of phosphorus is 15. Draw a dot (•) and cross (x) diagram for the compound formed when phosphorus reacts with chlorine, atomic number 17. State the condition under which a Bunsen burner produces a luminous flame One of the regions in the non-luminous flame is the unburnt gas region. Describe how the laboratory gas is butane. presence of this region can be shown using a wooden splint. Write an equation for the reaction that takes place in a luminous flame assuming the CH4@ +402 @ -> C & +3C 0 @ . fully closed. CH+ a ++02 a Part of the Alame with 1 = The When airhole Slip a wooden splint across the middle Kenya Certificate of Secondary Education, 2021 Central part remains unburnt unchar tere OP ISP XX outer part burns . unburnt Collar is closed 233/1 2 ->3C (1) + COO + 5 H=00 Burnt region region Sue los Senagy Levels Nuclear with and neutro 10: 7. 5 5 *× Countral +5H20 (1) × CI ° (2 marks) (1 mark) 2 (1 mark) (1 mark) 01 (1 mark)

N

Teacher.co.ke

Scanned	
with	
CamScanner	

Turn over

Kenya Certificate of 233/1

915032

			S P	DF Compresso	r Free Versi	on	4				
	mater 1 more Vigorousing mare Vielent	(c) Explain why it is not advisable to carry out this experiment using potassium metal (1)	monts Salution t	(b) State and explain another observation made when a drop of phenolphthalein is added to the mixture in the beaker.	ved - melts int	State two obse	A small piece of sodium metal was placed in a beaker containing pure water.	Molten sodium chloride	Concentrated sodium chloride	Compound	and molten sodium chloride.
of Gerondom Education, 2021	Vigorousiy	to carry out this experiment using potass	terns pink	ervation made when a drop of	the prece of metal darts I fleats	during the reaction.	laced in a beaker contain	Chlorine Clz	Chlorine or	Anode	Table 1
n. 2021	Imare Viele	ment using potassium me	is formed i	arm op of phenolphthalein is	11 fleats	5[ing pure water.	Sodium	Hydrosen H2	Cathode	1.1.1.
	at i	(1 mark)	Sodium	s added to (1 mark)		(1 mark)		(2 marks)	to she	use	

\$

(a)

The elements sodium, magnesium and aluminium belong to group I, II and III respectively.

S

Select the element with the highest electrical conductivity and give a reason.

(1 mark)

eacher.co.ke

Aluminium 1/2 Viz - Long mulia

It has I delecalised electrons multile

. (b)

Complete Table 1 to show the products of electrolysis for concentrated sodium chloride

Ĵ-

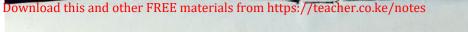
2

7

S-dium and magnesium has one and

two greated and

-


Download this and other FREE materials from https://teacher.co.ke/notes

915032		Valume.	or Free Version	And a	Lucher and the second	+ OI	- Tri Herry - Heart - - Heart - - Herry - Herr
Kenya Certificate of Secondary Education, 2021 233/1	Initial height of _ Timel height of	experiment. Initial height of - Final height of and Vi and column - Xion Anticolumn and column	expression to show how the percentage of air used is calculated at the c	 The following apparatus and chemicals are used to investigate the percentage of an used when iron rusts: iron filings, 100 ml measuring cylinder, trough and water. (a) Draw a setup of the experiment. (2 marks) 	teat the resulting solution to Saturitation V's the it the resulting solution constants V's Dry fither the Constants V's	Add excess copper in marted copper (1) occide	the semare unrecisted Cept (I) acid of nothing the sample of copper(II) nitrate crystals can be prepared using recycled copper bow a pure sample of copper (II) nitrate crystals can be prepared using recycled copper 50% (A) marks (Concentrated nutrice)

Turn over

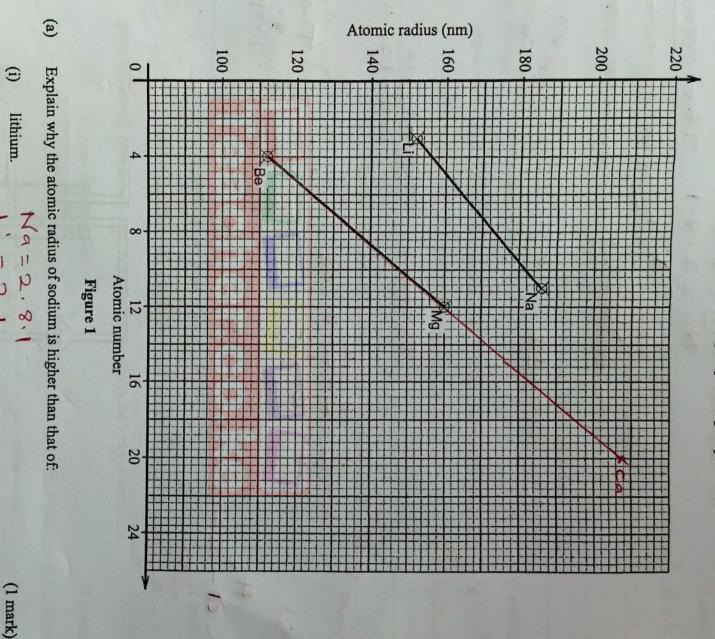
Kenya Certificate of Secondary Education, 2021 233/1

915032

0

20

L'ité iui

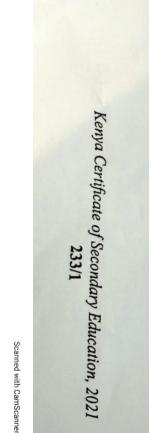

2

1-1-1

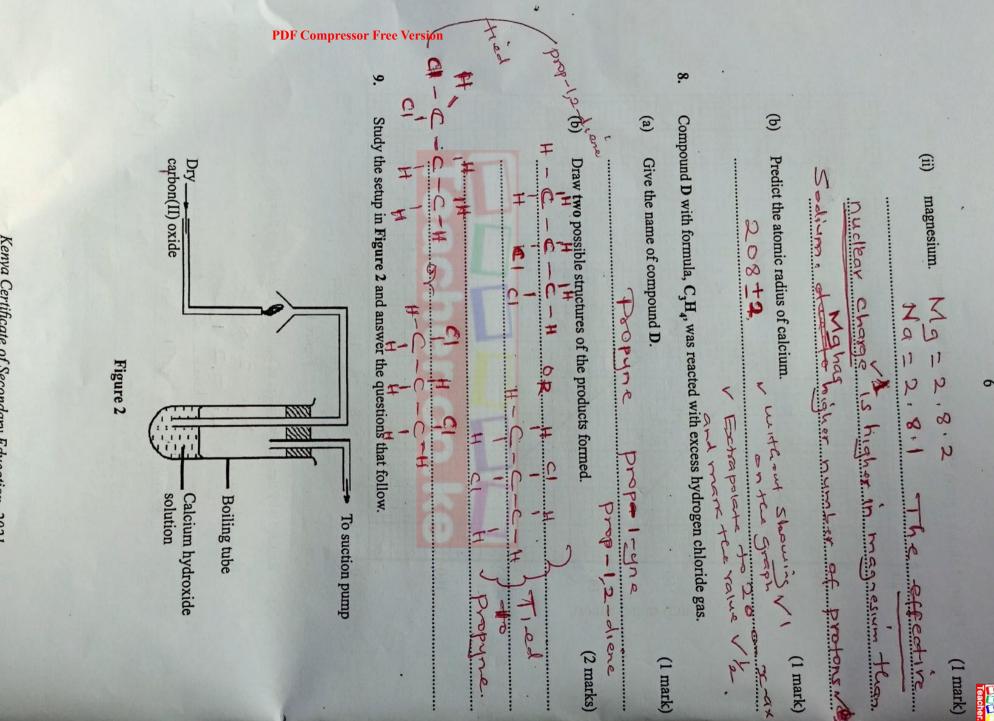
Ø

00

PDF Compressor Free Version



1 Figure 1 shows a graph of atomic radius of some group I and group II elements.


DY

S

Download this and other FREE materials from https://teacher.co.ke/notes

915032

6

co.ke

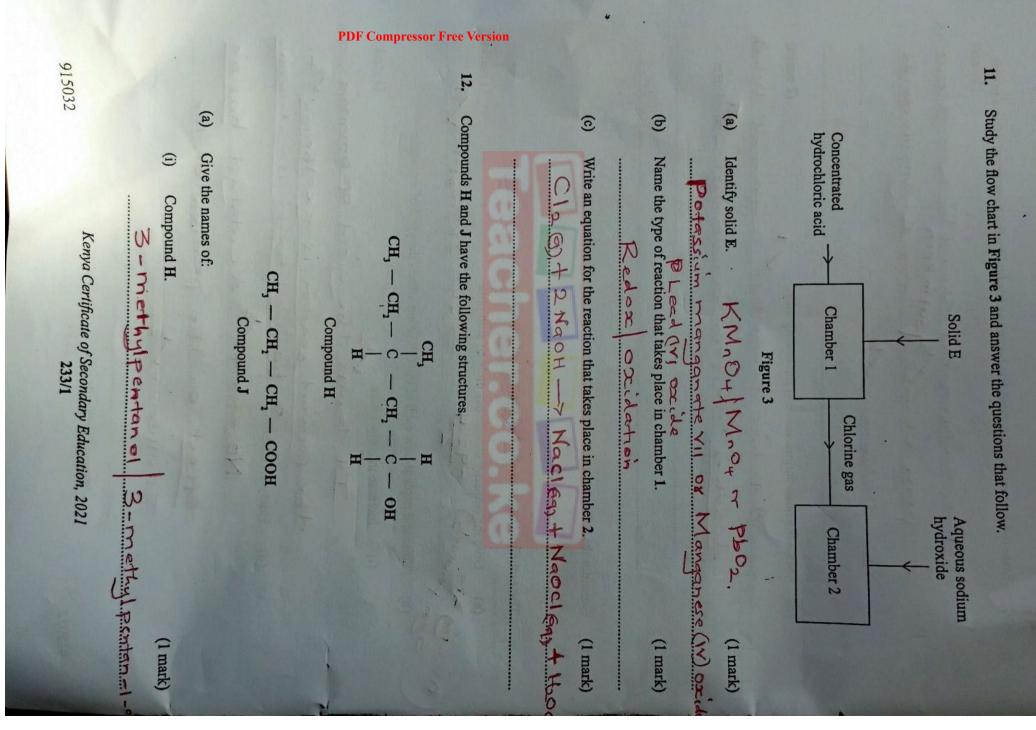
-	
ø	
Ω.	\geq
2	
1	
Q	-
9	
1.5	1

.

7

11 201 201 201 201 (11) 021 AC

.


4

.

.

Download this and other FREE materials from https://teacher.co.ke/notes

Scanned with CamScanner

00

Teacher.co.ke

Turn over

of Secondary Education, 2021 233/1

ownload this and other FREE ma	naterials from https://teacher.co.ke/notes	
915032	PDF Compressor Free Version	13. Rhom (a)
Keny	Addread and Addrea	Rhombic sulphur is one of the allotropes of su (a) Draw the structure of rhombic sulphur.
Kenya Certificate of Secon 233/	H H Hunn	ic sulphur is one of the allotropes of su Draw the structure of rhombic sulphur.

increases, the liquid becomes

5775

danc real brown d Irss Viscous

19

3 when rhombic sulphur is heated from room temperature

T

-(1 mark)

2m Rac

OR

S

S

5

anns

amber

1.quid

(1 mark)

Sulphur.

6

State the conditions necessary for H and J to react.

Butanoic acid

- Concentrated Sulphuni

VI acial

Sulphum's VI. Acid

(1 mark)

(1 mark)

14

_ Luarm | Heat

く「マー

Temperature batuer 3 - 60

es of sulphur.

(ii)

Compound J.

915032	The C	PDF Compressor Free Version	Mathemat 1	14. Th (a) Energy
Kenya Certificate of Secondary Education, 2021 233/1	Rx proved Rx proved Ally. Ally.	Calculate the enthalpy change when 5.22 g of potassium sulphate is completely dissolved in water (K = 39.0; S = 32.0; O = 16.0). RAM of KaSoy at 174 L Moles of KaSoy at 174 L Marking the the enthalpy change when 5.22 g of potassium sulphate is completely dissolvedthe the enthalpy change when 5.22 g of potassium sulphate is completely dissolvedthe the enthalpy change when 5.22 g of potassium sulphate is completely dissolvedthe the enthalpy change when 5.22 g of potassium sulphate is completely dissolvedthe the enthalpy change when 5.22 g of potassium sulphate is completely dissolvedthe the enthalpy change when 5.22 g of potassium sulphate is completely dissolvedthe the enthalpy change when 5.22 g of potassium sulphate is completely dissolvedthe the enthalpy change when 5.22 g of potassium sulphate is completely dissolvedthe the enthalpy change when 5.22 g of potassium sulphate is completely dissolvedthe the enthalpy change when 5.22 g of potassium sulphate is completely dissolvedthe the enthalpy change when 5.22 g of potassium sulphate is completely dissolvedthe the enthalpy change when 5.22 g of potassium sulphate is completely dissolvedthe the the enthalpy change when 5.22 g of potassium sulphate is completely dissolvedthe the the the the the the the the the	K2S0+69-1 Water J. J. Selution	The molar enthalpy of solution for potassium sulphate (K ₁ SO ₄) is +Z3.8 KJ. (a) On the axes provided, draw a labelled energy level diagram for the dissolution process of potassium sulphate in water. (a) On the axes provided, draw a labelled energy level diagram for the dissolution process of potassium sulphate in water. (b) On the axes provided, draw a labelled energy level diagram for the dissolution process of potassium sulphate in water. (c) On the axes provided, draw a labelled energy level diagram for the dissolution process of potassium sulphate in water. (c) On the axes provided, draw a labelled energy level diagram for the dissolution process of potassium sulphate in water. (c) On the axes provided, draw a labelled energy level diagram for the dissolution process of potassium sulphate in water. (c) On the axes provided, draw a labelled energy level diagram for the dissolution process of potassium sulphate in water. (c) On the axes provided, draw a labelled energy level diagram for the dissolution process of potassium sulphate in water. (c) On the axes provided diagram for the dissolution process of potassium sulphate in water. (c) On the axes potassium sulphate in water.<

10

Teacher.co

.

Scanned with CamScanner

223

Set **PDF** Compressor Free Version 915032 15. 6 (a) (ii) Ξ 180 cm³ of nitrogen(II) oxide gas was reacted with 400 cm³ of oxygen gas. State Gay-Lussac's law. to the products if gaseous that bear simple temperature and pressure. V When PZ0 Calculate the total volume of the gases at the end of the reaction. Write an equation for the reaction 2 NOG + 1012ma Volume 2 pryson unreaded = 1400-90 Sume Kenya Certificate of Secondary Education, 2021 0 usi's ratio Ta gases react, they do 7 of oxyser 1 Volume P C p ZON 233/1 C 2C ſ 11 ratios to one another and =qocm3 1 PZO2 210 120×1 20 13 + 2402 120 -310 at constant So In Volumes P D CMS p7 Turn over (Hanks) (1 mark) (1 mark) p .

21/40

11

Teach

er.co.ke

Download this and other FREE materials from https://teacher.co.ke/notes

CO.Ke

16.

Describe how the setup in Figure 4 can be used to distinguish between 50.0 cm³ of 0.2 M hydrochloric acid and 50.0 cm³ of 0.2 M ethanoic acid using pieces of 6 m length of magnesium

12

..... 1 ettanoic Volume Sosma of Har Using a Stepmeter ettan. 0 C+0 Dut Scm3 Lepent (10 R 1. S a 2 80 AI K 2 N U Kenya Certificate of Secondary Education, 2021 Gen Manthen In 1 10 et on Acid 5-0 Higher tee U ARIA ar gases collected at a time internal es OR P * ゴア 5 Hc/ experment Figure 4 YOLU Ne 233/1 used 3 2 erral 5 He(Za 1111 こうろ 0 ~ ark ONTRO Cancel real nchusion of gas 20 05 1 a sr 5 F ナーで E tern USING 6 es~ estere 2. 0 second the Plask and add けい 1 40 chiend 2 11.11 Jo cmo of Shorter etters TRAS 20 (3 marks) 5 P 5 P 15 × 5 × 5 TIME 游 N 74 2023

PDF Compressor Free Version

915032

17. 18. **PDF Compressor Free Version** 915032 Describe how dilute nitric(V) acid and blue litmus papers can be used to distinguish between solid samples of sodium carbonate and sodium sulphite. (a) 9 Ad 6 10 itra Describe how propanone can be used to extract a pure sample of sunflower oil T State why sodium hydroxide solution is not suitable for the extraction of sunflower oil Bothe turns 1440 5 0 Voap Ace 2 Dest t -15 e alter - eave Jample test 5 aperat ecantv 5 thet blue うしていく tifferent test tu Kenya Certificate of Secondary Education, 2021 Sodium (11) T 670 ナ Panone Sufformer rg red Sulphite F LY'Y QT ~~~~ 233/1 0+ F 2 DI たい」 2 0 JA ちてい what 57 Ser. Speas - auto Cartaining The Samples Q b 5 1 bleaching pleached 4-0 USING ē J. ナマンナ Laur s otor (3 marks) (2 marks) 01 Turn over (1 mark) オテ Prop to 667 题 2023

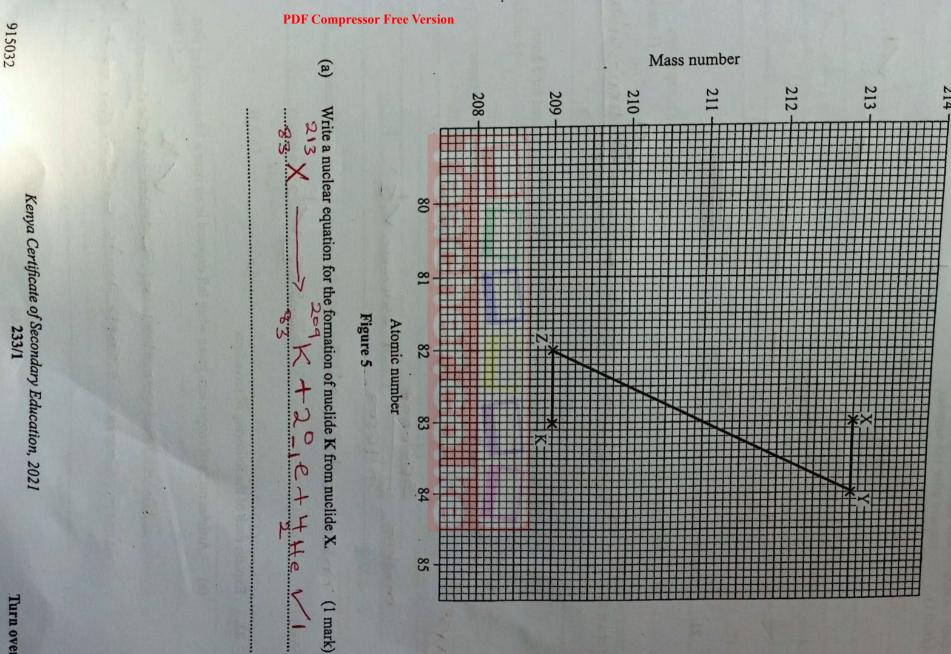
13

a l

C, V, 2C2V2. 0.4×25 2C2×10 915032 3 **PDF Compressor Free Version** 10.4725 11 (6) (a) 0 Calculate concentration of the: Ξ State the correct method for diluting the concentrated nitric(V) acid. E dilute acid. concentrated acid 3 Moles Kenya Certificate of Secondary Education, 2021 50)0 olar $C_1 Y_1 2 C_2 Y_2$ acro 4 7 Naor HHO3 P 233/1 1103 1 1) W 0.0 is J IJ ~ ater V 0 0 1 0 X Q 0 15.9M 5 0 00 3 (1 mark) (1 mark) (1 mark)

19.

31.5 cm³ of concentrated nitric(V) acid was diluted to 500 cm³. 10.0 cm³ of the dilute ac


Teacher.co.ke

required 25.0 cm³ of 0.4 M sodium hydroxide for neutralisation.

Download this and other FREE materials from https://teacher.co.ke/notes

inne

Turn ove

15

20

Figure 5 shows part of a radioactive decay series.

915032	22. Exp (a)	PDF Compressor Free Version V	(b) 21. Ali
Kenya Certificate of Secondary Education, 2021 233/1	Explain each of the following observations: (a) Articles made of copper turn green when left exposed in air over a long period of time. (1 mark) The to formation of Copper (1) Carlonate: Since appendent of the carlon (1) and (2) Since appendent of the carlon (1) and (2) (1 mark)	(b) Calculate the mass of aluminium obtained when a current of 20A is used for 5 hours. (1 Faraday = 96500 C; AI = 27.0) (2 marks) 2 2 0 X 5 X 6 0 3 8 0 0 0 (2 marks) 3 6 5 0 0 0 X 1 2 7 (2 marks) 3 6 5 0 0 0 X 1 2 7 (2 marks) 3 6 5 0 0 0 X 1 2 7 (2 marks) 3 7 6 5 0 7 1 2 7 (4 moles) V 2 1 - 2 7 4 X 2 7 - 3 3 - 3 3 - 5 3 3 - 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2	 (b) The half-life of nuclide X is 47 minutes. Determine the percentage of nuclide X if (2 marks) remains after 188 minutes. (2 marks) (c) The half-life of nuclide X is 47 minutes. (2 marks) (d) The half-life of nuclide X is 47 minutes. (1 mark) (e) The half-life of node is to be performed in the cost of electricity, give another reason why this method is expensive.

...

16

915032	(B)	PDF Comp (a) Carb	ressor Free Version	P.Am gr beh	23. (a) O	O
Kenya Certificate of Secondary Education, 2021 233/1 Turn over	Name another reagent that can be used to prepare carbon(II) oxide by dehydration. - Methansis - S-duin methan oate:	Carbon(II) oxide can be prepared by dehydration of ethanedioic acid. (a) Complete the following equation to show the reaction that takes place. (1 mark) $H_1C_2O_4 \rightarrow COO_1 + CO_2 + H_2OO_1, / (1 mark)$	- + ~ 1/2 - + ~ 1/2 - + ~ 1/2 - + ~ 1/2 - + ~ 1/2 + + ~ 1/2 + ~ 1/2 	A compound of carbon and element X with formula, CX, contains 3.6% carbon by mass. Calculate the relative atomic mass of X. (2 marks) 12 3.6 96.4 3.6 2.4 3.6 2.4 3.6 $3.$	State what is meant by relative atomic mass of an element. [C-(N+3)+] "+ (I mark) IS the mass of an element. [C-(N+3)+] "+ (I mark) of an element Compared to the mass of th	mmonia to a solution containing copper(II) ions produces a deep
						Teacher.co.ke

.

17

PDF Compressor Free Version 25. 915032 Figure 6 shows an incomplete diagram of a setup for laboratory preparation of nitrogen gas. 3 (a) Complete the setup in Figure 6 to show how nitrogen gas can be collected. The nitrogen prepared using this setup is purer than that obtained from air. Give a reason. H-hay ammonium chloride and gases Solution of sodium nitrite Kenya Certificate of Secondary Education, 2021 233/1 Impurities Figure 6 Such water Isough 20 Appar 52 Dople cher 1 4114 (2 marks) (1 mark) 600 ろエ 11

× 002×07221991991

HI obra

acher.co.ke

T

		PDI	F Con	ipresso	or Free V	ersion					hard .						
915032		1	-	1 PD			1	Ŧ	1 TO	11/1			-]
Kenya Certi	- 2796	5×463 = 1852	1×944 =944	Routs formed	2211	1×476 2 496	1× 163 - 163	4×383 = 1552	Bonds brokon	N2H4 + 02	· · · · 0 H · · · · · · · · ·	N≡N	0=0	N-N	N—H	Bond	
Kenya Certificate of Secondary Education, 2021 233/1	c v				L' martine l'	Contartor	EastCally of -			~ -> t2+ H20		944	496	163	388	Bond Energy kJ/mol	Table 2
Turn over					- 585K5/m=1-		- 2796+2211			(3 marks)							

Teacher.co.ke

26.

Z-H

H

Hydrazine, H - N - N - H is used as a fuel in rockets. Using the bond energies in Table 2, calculate the enthalpy change for combustion of hydrazine.

Kenya Certificate of Secondary Education, 2021 233/1

915032

THIS IS THE LAST PRINTED PAGE.

2023

PDF

Compressor F	ree Version	~						
		(6)						
	15 needed to requisted functioning of the	Bromine will not displace chi Is more Positive VI Give a reason why potassium iodide is added to table salt.	Bra Ent DCI> No roa	Bralent 2I (m) ->	State and explain the reactions that take place when aqueous bromine is added to a sample of sea water containing both chloride and iodide ions. (2 marks)	$I_1 + 2e \rightarrow 21^-$	$Br_1 + 2e \rightarrow 2Br^-$	$Cl_1 + 2e \rightarrow 2Cl^-$
	to regulated functioning of the	osition vi potassium iodide is added to table salt.	Bra Gy + 2 CI> No reaction Brominie I	Brabast 2I (my ->2Br any +I a (m)	ke place when aqueous bromine is and iodide ions.	+0.54	+1.07	+1.36
	0 0	(1 mark)	re Positive E0		added to a sample (2 marks)			

067

Teacher.co.ke

20

Table 3 gives the standard reduction potentials of some group VII elements.

Table 3

27.

(a)

Reduction equations

+1.36

E'N