232/1

— PHYSICS —

Paper 1

(THEORY) Nov. 2019 – 2 hours

Name	Index Number
Candidate's Signature	Date

2019 KOSE 2079 /

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) This paper consists of two sections; A and B.
- (d) Answer all the questions in sections A and B in the spaces provided.
- (e) All working must be clearly shown.
- (f) Non-programmable silent electronic calculators may be used.
- (g) This paper consists of 15 printed pages.
- (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (i) Candidates should answer the questions in English.

For Examiner's Use Only

Section	Questions	Maximum Score	Candidate's Score
A 64	1-13	25	N 6/2
	14	011/10	
	15	11	
В	16	11	
	17	11	
	18	12	
	Total Score	80	

© 2019 The Kenya National Examinations Council 232/1

SECTION A (25 marks)

Answer all the questions in this section in the spaces provided.

1.	instrument when used to measure the diameter of a wire whose actual diameter is $0.38 \mathrm{mm}$.
	(1 mark)

Figure 1 shows a defective straw used to suck milk from a glass.

Figure 1

It was observed that upon sucking the straw, milk did not	rise up the straw. Explain this
observation.	(2 marks)

3.	State two ways of reducing the surface tension of a liquid.	(2 marks)

4. Figure 2 shows a round bottomed flask containing a coloured liquid. The flask is fitted with a capillary tube.

Figure 2

t is observed that on holding the flask with bare hands, the level of the liquid in	n the capillary
ube initially drops slightly and then rises. Explain this observation.	(3 marks)

5. Figure 3 shows two metal rods A and B of equal length made of the same material but different diameters. Wax is attached at one end of each rod. A source of heat is placed between the two metal rods.

Figure 3

State with a reason, what is observed on the wax.	(2 marks)

6. On the axes provided, sketch a displacement – time graph for a trolley moving down a frictionless inclined plane till it reaches the end of the incline. (1 mark)

7

	30 (1000) (1000) (1000) (1000) (1000)		•••••
Figure 4	shows a one meter long unifor	orm rod of negligible weight supporting two weights	s.
	0 5	80 100	
	10N	15N	
		Figure 4	
Determi	ne the position of the fulcrum		
Determin	ne the position of the fulcrum	from 0 cm for the rod to remain in equilibrium.	mark
Determin	ne the position of the fulcrum	from 0 cm for the rod to remain in equilibrium.	mark
Determin	ne the position of the fulcrum	from 0 cm for the rod to remain in equilibrium.	marl
Determin	ne the position of the fulcrum	from 0 cm for the rod to remain in equilibrium.	mark
Determin	ne the position of the fulcrum	from 0 cm for the rod to remain in equilibrium.	mark
Determin	ne the position of the fulcrum	from 0 cm for the rod to remain in equilibrium.	marl
		from 0 cm for the rod to remain in equilibrium. (3 r	mark
	meaning of the term "radian"	from 0 cm for the rod to remain in equilibrium. (3 r	•••••
		from 0 cm for the rod to remain in equilibrium. (3 r	mark

	For a fluid flowing at a velocity V in a tube of cross-sectional area A, VA = of the control of	constant. State two
10.	assumptions made in deriving this equation.	(2 marks)

		and in a certain
1.	A stone of volume 800 cm ³ experiences an upthrust of 6.5 N when fully imm	(2 marks)
	liquid. Determine the density of the liquid.	,
		C
12.	Figure 5 shows two springs C and D of the same length and equal number of	f turns made from
	the same wire.	
	C D	
	to be a second of the second o	
	U U	
	Figure 5	
	State with a reason which of the two springs can support a heavier load before	
	elastic limit.	(2 marks)

PDF Compressor	Free	Version
-----------------------	------	---------

13.	Two boxes E and F of masses 2.0 kg and 4.0 kg respectively are dragged along a frictionless surface using identical forces. State with a reason which box moves with a higher velocity.
	(2 marks)

Kenya Certificate of Secondary Education, 2019 232/1

Turn over

SECTION B (55 marks)

Answer all the questions in this section in the spaces provided.

14.	(a)	A student is provided with five 20 g masses, a meter rule, a spring with a pointer, a stand,
		a boss and a clamp.

(i)	In the space provided, sketch a labelled diagram of the set up that may	be used in
. ,	order to verify Hooke's law using these apparatus.	(3 marks)

	(ii)	State two measurements that should be recorded in order to plot a suitable graph
		so as to verify Hooke's law. (2 marks)
	(iii)	Describe how the measurements made in (ii) can be used to determine the spring
		constant. (2 marks)
(b)	A he	sion when the same spring supports a weight of 40 g. Determine the
	exten	sion when the same spring supports a weight of 65 g. (3 marks)

15. (a) Figure 6 shows a bottle top opener being used to open a bottle.

Figure 6

Indica	ate on	the diagram the direction of the load and the effort.	(2 marks)
(b)	State two ways in which an inclined plane can be made to reduce the applied effort when pulling a load along the plane. (2 marks)		

(c)		ock and tackle system has three pulleys in the upper fixed block and two power movable block.	oulleys in
	(i)	Draw a diagram to show how the system can be set up in order to lift a indicate the position of the load and effort.	load and (3 marks)

(ii)	State the velocity ratio of the set up.	(1 mark)

8

	(iii) In such a block and tackle system an effort of 200 N is required to 600 N. Determine its efficiency.	
		·····
		•••••••••••••••••••••••••••••••••••••••
		•·····································
6. (a)	State the meaning of the term "heat capacity."	(1 mark)
		•••••
		•••••••
(b)	State how pressure affects the melting point of a substance.	(1 mark)
1 600		
		· · · · · · · · · · · · · · · · · · ·

(c) Figure 7 shows a set up of apparatus that may be used to measure the specific latent heat of vaporisation of steam.

Figure 7

(i)	Describe how the mass of condensed steam is determined.	(3 marks)
		• • • • • • • • • • • • • • • • • • • •

(ii)	Other than mass and time, state two other measurements that should be	e taken
	during the experiment.	(2 marks)
		•••••••

(iii)	Show how the measurements in (c)(ii) can be used to determine the sp	ecific latent
71-1070	heat of vaporisation of water.	(2 marks)
		•••••

Kenya Certificate of Secondary Education, 2019 232/1

		(iv)	State the precaution that should be taken so that the mass of the conder measured corresponds to the actual mass of steam collected during the recorded in the experiment.	
		(v)	State why it is not necessary to measure temperature in this set up.	(1 mark)
			<u></u>	
17.	(a)	State	what is meant by Brownian Motion.	(1 mark)

(b) Figure 8 shows the graph of velocity against time for a small steel ball falling in a viscous liquid.

Figure 8

	(i)	Describe the motion of the steel ball as represented by part OA.	(1 mark)		

	(ii)	Explain why the velocity between A and B is constant.	(3 marks)		
			······································		
(c)	A student throws a tennis ball vertically upwards from the ground and it lands back after 8 seconds. (acceleration due to gravity $g = 10 ms^{-2}$)				
	Dete	rmine the:			
	(i)	maximum height reached by the ball;	(3 marks)		
		P Dec 1	***************************************		

	(ii)	velocity with which the ball hits the ground.	(3 marks)		
			••••••		
			······································		

18. (a) Figure 9 shows a graph of pressure against temperature for a fixed mass of gas at constant volume.

Figure 9

from the graph, determine the values of n and c given that $P = nT + c$ who	ere n and c
re constants.	(4 marks)
In 1 -	
	••••••
	•••••
	••••••

(b)	Explain why it is not possible to obtain zero pressure of a gas in real life situation.			
		(2 marks)		

(c)	A fixed mass of a gas occupies 1.5 × 10 ⁻³ m ³ at a pressure of 760 mmHg and a			
	temperature of 273 K. Determine the volume the gas will occupy at a t	emperature of		
	290 K and a pressure of 720 mmHg.	(3 marks)		
(d)	State any three assumptions made in kinetic theory of gases.	(3 marks)		
		······································		
		••••••		

THIS IS THE LAST PRINTED PAGE