BACCALAUREAT SESSION DE JUIN 2022 EPREUVE DE MATHEMATIQUES : SERIE A1 GRILLE ET NORMES DE CORRECTION

N°	Eléments de réponses	Capacité « Analyser » [1Ca = 2pts Le candidat	Capacité « Mathématiser » 1 Cm = 2 pts Le candidat	Capacité « Opérer » 1Co = 2pts Le candidat	Tot al
1	N X X X	Problème 1			
1)	Déterminons les limites de f en $-\infty$ et en $+\infty$ On a: $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (-2x^2 + 4x)$ $= \lim_{x \to -\infty} (-2x^2)$ $= -\infty$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (-2x^2 + 4x)$ $= \lim_{x \to +\infty} (-2x^2)$ $= -\infty$ Donc $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = -\infty$	• identifie $f(x)$	utilise • la propriété permettant de calculer la limite d'une fonction polynôme à l'infini • lim x² = +∞ • lim x² = +∞ 6pts	trouve $\lim_{\substack{x \to -\infty \\ x \to +\infty}} f(x) = -\infty$ $\lim_{\substack{x \to +\infty \\ }} f(x) = -\infty$	121
2)	Déterminons $f'(x)$ pour tout élément x de \mathbb{R} Soit D l'ensemble de définition de f . $D = \mathbb{R}$ car f est une fonction polynôme. f étant une fonction polynôme alors elle est dérivable sur \mathbb{R} $\forall x \in \mathbb{R}$, $f'(x) = -2(2x) + 4(1)$ = -4x + 4	• identifie la fonction f	• utilise une formule de dérivation	trouve • $f'(x) = -2(2x) + 4(1)$ • $f'(x) = -4x + 4$ • $\forall x \in \mathbb{R}$ 4pts	12j ts 10 ts ge 1 su