

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS PAPER 1 JUNE 2022

MARKS: 150

TIME: 3 hours Stanmorephysics.com

This question paper consists of 9 pages and a one-page information sheet

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of **11** questions. Answer ALL the questions.
- 2. Show clearly ALL the calculations, diagrams, graphs, etcetera, which you have used in determining the answers
- 3. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 4. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 5. Answers only will not necessarily be awarded full marks.
- 6. Number the answers correctly according to the numbering system used in this question paper.
- 7. Diagrams and graphs are NOT necessarily drawn to scale.
- downloaded from stal 8. An information sheet with formulae is included at the end of the question paper.

9. Write neatly and legibly.

1.1 Solve for *x*.

1.1.1
$$-(1-x)(x+2) = 0$$
 (3)

1.1.2
$$2x^2 = -5x + 4$$
 (correct to TWO decimal places) (4)

1.1.3
$$-x^2 - x + 6 \ge 0$$
 (4)

1.1.4
$$\sqrt{x+2} = x$$
 (4)

Given $9^{x+2}.27^{y+1} = 3^{1-x}$ and $x^2 + y^2 + xy = 7$ 1.2

1.2.1 Show that
$$y = -x - 2$$
 (3)

1.2.2 Hence, solve for
$$x$$
 and y simultaneously (5)

1.3 Prove that the roots of
$$x^2 = 1 - px$$
 are real for all values of x . (3)

1.2 Given
$$9^{x+2} \cdot 27^{y+1} = 3^{1-x}$$
 and $x^2 + y^2 + xy = 7$

1.2.1 Show that $y = -x - 2$

1.2.2 Hence, solve for x and y simultaneously

(3)

1.3 Prove that the roots of $x^2 = 1 - px$ are real for all values of x .

(3)

1.4 If $x + \frac{1}{x} = 10$, $x > 0$, determine without solving the equation, the value of $x^2 + \frac{1}{x^2}$

[29]

QUESTION 2

[29]

QUESTION 2

Consider the following sequence: $\frac{1}{2}$; 5; $\frac{1}{4}$; 9; $\frac{1}{8}$; 13; . . . 2.1

2.2 If the general term of the quadratic sequence 1; x; 17; y; 49; ... is

$$T_n = 2n^2 + bn + c$$
, find the value of x and y. (5)

[16]

Mat Downloaded from Stanmorephysics.com

QUESTION 3

3.1 For which values of *x* will the series

$$(3x-4)^3 + (3x-4)^4 + (3x-4)^5 + \dots$$
 be a converging series?

e a converging series?

3.2 Evaluate $\sum_{k=3}^{k=20} 2(3)^{k-1}$

[7]

(4)

QUESTION 4

Given (y+3)(x-2) = 4

4.1 Express the function in the form

$$f(x) = \frac{a}{x - p} + q$$

4.2 Write down the equation of the asymptotes.

(2)

(1)

4.3 Write down the range of f.

(1)

4.4 Determine:

(1)

4.4.2 the
$$x$$
- intercept

(2)

4.5 Sketch the graph of the function showing clearly the asymptotes and the intercepts with the axes.

(3)

4.6 If another function g is defined as g(x) = f(x-2) + 5, determine the coordinates of the point of intersection of the asymptotes of g.

(2) [12]

The sketch below shows the graph of $g(x) = x^2 - x - 6$ and h(x) = ax + q. The graphs intersect at B and E. The graph of g intersects the x-axis at A and B and has a g intercept at C. The graph of g makes an angle of g0 with the g1 with the g2 axis.

5.1 Determine the coordinates of B and C. (4) Calculate the value of a, the gradient of the function h. 5.2 (2) 5.3 Determine the coordinates of D (2) 5.4 Calculate the length of CD (1) 5.5 Determine the equation of a line perpendicular to *h* and passing through B. (3) 5.6 Determine the value(s) of *x* for which g(x).g'(x) > 0(3) [15]

The graph of $f(x) = a^x$ passes through P(-2; 9).

- 6.1 Determine the value of a. (3)
- 6.2 Write down the equation of f^{-1} , the inverse of f in the form y = ... (2)
- 6.3 Sketch the graphs of f and f^{-1} on the same system of axes. Show at least one point on f^{-1} and indicate the line of reflection. (3)
- 6.4 Write down the domain of the f^{-1} (1)
- 6.5 Write down the equation of g(x) = f(-x). (2)
- 6.6 Determine the values of *x* for which $f^{-1}(x) > -2$. (3)

[14]

- 7.1 When John purchased his new car, the bank offered him a loan at a nominal rate of 13% p.a. compounded monthly. What was the effective annual interest rate that he was required to pay? (3)
- 7.2 How many years will it take for an article to depreciate to half its value according to the reducing–balance method at 7% per annum.

 Give your answer in months (4)
- 7.3 Thandi needs to save money to buy a cellphone at the end of 7 years. She already has R3000.00 invested in a bank account. Two years after her first deposit of R3000.00, her mother gave her R4000.00 to add to her investment. The interest rate for the first 3 years is 7% per annum compounded quarterly but then changes to 12% per annum compounded every 6 months. Will she have enough money at the end of the 7 year period to buy a cellphone worth R12 000.00? Show all your calculations. (6)

QUESTION 8

8.1 Given
$$f(x) = -\frac{2}{x}$$
, determine $f'(x)$ from first principles. (5)

8.2 Determine:

8.2.1
$$f'(x)$$
 if $f(x) = \frac{1}{2}x^2 - \frac{3x}{10}$ (2)

8.2.2
$$D_x \left[2\sqrt{x^3} + \frac{1}{3x} \right]$$
 (4)

8.2.3
$$\frac{dy}{da}$$
 if $y = 3x^3a^4 + a^5x$. (2)

[13]

The following information is about a cubic polynomial y = f(x).

- $\bullet \quad f(-1) = 0$
- f(5) = 0
- f(0) = -2
- f'(-1) = f'(3) = 0
- f(3) = -6
- If x < -1 then f'(x) > 0
- If x > 3 then f'(x) > 0
- 9.1 Sketch a neat graph f(x) showing all intercepts and turning points. (5)
- 9.2 Use the graph to find the x value of the point of inflection. (2)
- 9.3 For which values of x is the graph decreasing? (2)

[9]

QUESTION 10

A stone is thrown upwards. Its height (in metres) above the ground at t seconds is given by $h(t) = -t^2 + 6t + 16$.

- 10.1 Determine the initial height of the stone above the ground. (1)
- 10.2 Determine the time taken to reach the maximum height. (3)
- 10.3 Determine the acceleration of the stone. (1)
- 10.4 How fast was the stone travelling when it hit the ground? (4)

[9]

- 11.1 Events A and B are independent .Given that
 - P(A only) = 0.4
 - P(A and B) = 0.3
 - P(B only) = x
 - P(not(A or B)) = y
 - 11.1.1 Are events A and B mutually exclusive? Justify your answer. (2)
 - 11.1.2 Calculate P(A and B)' (2)
 - 11.1.3 Determine the values of x and y. (4)
- 11.2 The probability that a certain soccer team has all its players fit to play is 70%. The probability that they will win a game if all their players are fit is 90%. When they are not fit the probability of them winning becomes 45%.
 - 11.2.1 Draw a tree diagram to show the possibilities (3)
 - 11.2.2 Calculate the probability of them winning their next game (2)

[13]

TOTAL: 150

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + in) \qquad A = P(1 - in) \qquad A = P(1 - i)^n \qquad A = P(1 + i)^n$$

$$T_n = a + (n - 1)d \qquad S_n = \frac{a}{2}[2a + (n - 1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1}; r \neq 1 \qquad S_w = \frac{a}{1 - r}; -1 < r < 1$$

$$F = \frac{x[(1 + i)^n - 1]}{i} \qquad P = \frac{x[1 - (1 + i)^n]}{i}$$

$$f'(x) = \lim_{n \to 0} \frac{f(x + h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan \theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$\ln \Delta ABC : \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc \cos A$$

$$Area of \Delta ABC = \frac{1}{2}ab \sin C$$

$$\sin(\alpha + \beta) = \sin\alpha \cos \beta + \cos\alpha \sin \beta \qquad \sin(\alpha - \beta) = \sin\alpha \cos \beta - \cos\alpha \sin \beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\sin(\alpha + \beta) = \sin\alpha \cos \beta - \cos\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta - \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\sin(\alpha + \beta) = \sin\alpha \cos \beta - \cos\alpha \cos \beta$$

$$\sin(\alpha + \beta) = \sin\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\sin(\alpha + \beta) = \sin\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\sin(\alpha + \beta) = \cos\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\sin(\alpha + \beta) = \cos\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\sin(\alpha + \beta) = \cos\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\sin(\alpha + \beta) = \cos\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\sin(\alpha + \beta) = \cos\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\sin(\alpha + \beta) = \cos\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\sin(\alpha + \beta) = \cos\alpha \cos \beta + \sin\alpha \sin \beta$$

$$\sin(\alpha + \beta) = \cos\alpha \cos \beta + \cos\alpha \sin \beta$$

$$\sin(\alpha + \beta) = \cos\alpha \cos \beta + \sin\alpha \cos \beta$$

$$\sin(\alpha + \beta) = \cos\alpha \cos \beta + \sin\alpha \cos \beta$$

Copyright reserved

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS PAPER 1 MARKING GUIDELINES

JUNE 2022

Stanmorephysics.com

MARKS: 150 TIME: 3 hours

This marking guideline consists of 10 pages.

OUESTION 1

QUE	STION 1		
1.1.1	-(1-x)(x+2) = 0	✓ multiply by negative	
	(1-x)(x+2)=0	$\checkmark x = 1$	
	1 - x = 0 or $x + 2 = 0$	$\checkmark x = -2$	
	x = 1 or x = -2		(3)
1.1.2	$2x^2 = -5x + 4$		
	$2x^{2} + 5x - 4 = 0$	✓standard form	
	$x = \frac{-5 \pm \sqrt{(5)^2 - 4(2)(-4)}}{2(2)}$	✓ substitution in correct formula	
	2(2)		
	$x = \frac{-5 \pm \sqrt{57}}{4}$	✓ √57	
	x = -3.14 or x = 0.64	✓both values	(4)
1.1.3	$-x^2 - x + 6 \ge 0$	✓ inequality	
	$x^2 + x - 6 \le 0$	✓ critical values	
		$\checkmark\checkmark-3\leq x\leq 2$	
	$(x+3)(x-2) \le 0$		
	\ ,	_	
	-3/1/1//2		
	-3////// 2		
	M.		
	or2		
	-3 2		
			(4)
	$-3 \le x \le 2$		
1.1.4	$\left(\sqrt{x+2}\right)^2 = (x)^2$	✓ squaring both side	
	$x + 2 = x^2$	✓standard form	
	$x^2 - x - 2 = 0$		
	(x-2)(x+1)=0	✓ factorisation	
	x = 2 or $x = -1$	(l	(4)
1.2.1	$9^{x+2}.27^{y+1} = 3^{1-x}$	✓ x- values	
1.2.1		✓exponential law	
	$3^{2(x+2)}.3^{3(y+1)} = 3^{1-x}$	- exponential law	
	$3^{2x+4+3y+3} = 3^{1-x}$	✓exponential law	
	3x + 3y = -6		
	y = -x - 2	$\checkmark 3x + 3y = -6$	(3)
1.2.2	$(-y-2)^2 + y^2 + y(-y-2) = 7$	✓substitution	
	$y^2 + 4y + 4 + y^2 - y^2 - 2y = 7$		
	$y^2 + 2y - 3 = 0$	✓ standard form	
	(y+3)(y-1) = 0	✓ factors	
		✓both y values	
	y = -3 or y = 1 x = 1 or x = -3		
	X = 1 Or X = -3	✓both <i>x</i> values.	(5)

Mat Dom/sloaded from Stanmorephysics.com NSC-Marking Guideline

MDE/June 2022

			[29]
	$x^2 + \frac{1}{x^2} = 98$	✓answer	(3)
	$x^2 + \frac{1}{x^2} = 100 - 2$	✓simplification	
	$x^2 + 2 + \frac{1}{x^2} = 100$	Stahmorephysics.	com
1.4	$\left(x + \frac{1}{x}\right)^2 = 10^2$	✓ square both sides	
	\(\Delta > 0\) for feat values of \(\lambda\).		(3)
	$b^2 - 4ac = p^2 + 4$ $\Delta > 0$ for real values of x .	✓ conclusion	(2)
	$b^2 - 4ac = p^2 - 4(1)(-1)$	✓ substitution in discriminant	
1.3	$x^2 + px - 1 = 0$	✓ standard form	
		C-Marking Guidenne	

QUESTION 2

QUES	STION 2		
2.1.1	$\frac{1}{16}$, 17	$\checkmark \frac{1}{16}$	
		√ 17	(2)
2.1.2	$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}$		
	$a = \frac{1}{2}, r = \frac{1}{2}, n = 125$	$\checkmark a$, r and n	
	$S_{125} = \frac{0.5(1 - 0.5^{125})}{1 - 0.5}$ = 1 For writhmetic sequence 5, 0, 13	✓ substitution in correct formula $\checkmark S_{125} = 1$	
	For arithmetic sequence 5, 9. 13 $a = 5$, $d = 4$, $n = 125$		
	$S_{125} = \frac{125}{2} [2(5) + (125 - 1)4]$	✓ substitution in correct formula \checkmark S ₁₂₅ = 31625	
	= 31625	S ₁₂₅ = 31023	
	$S_{125} + S_{125} = 1 + 31625$ $= 31626$	✓31626	(6)
2.1.3	$T_n = 5 + (n-1)(4)$ = $4n + 1$ $T_{80} = 4(80) + 1$	✓ substitution $\checkmark 4n+1$	
	= 321	√ 321	(3)
2.2.2	1 x 17 y 49	✓ first difference	

Copyright reserved

[16]

NSC-Marking C	Juluellile	
	✓ second difference	
x-1 17-x $y-17$ 49-y		
17-x-(x-1) $y-17-(17-x)$ $49-y-(y-17)$		
18-2x $y+x-34$ $66-2y$		
a = 2	$\checkmark 18 - 2x = 4$	
∴ 2 <i>a</i> = 4	$\checkmark x = 7$	
	$\checkmark y = 31$	
$\therefore 18 - 2x = 4 \text{ or } y + x - 34 = 4$		
x = 7		
		(5)
$\therefore y + 7 - 34 = 4$		
y = 31		

QUESTION 3

3.1	$r = \frac{(3x-4)^4}{(3x-4)^3} = (3x-4)$	✓value of <i>r</i>	
	$(3x-4)^3$ -1<3x-4<1	$\sqrt{-1} < 3x - 4 < 1$	
	$1 < x < \frac{5}{3}$	✓ condition	
	3		(3)
3.2	$\sum_{k=3}^{20} 2(3)^{k-1} = 2(3)^2 + 2(3)^3 + 2(3)^4 + \dots + 2(3)^{19}$	✓ value of n	
	$=18+54+162+\dots$		
	n = 20 - 3 + 1 = 18	✓ value of <i>r</i>	
	$r = \frac{2(3)^3}{2(3)^2} = 3$	✓ substitution into	
	$S_{18} = \frac{18(3^{18} - 1)}{3 - 1} = 3496794392$	correct formula ✓ answer	(4)
	3-1		
			[7]

~~=	QUEDITOT 4		
4.1	$y = \frac{4}{x-2} - 3$	✓ value of $f(x)$	(1)
	$\therefore f(x) = \frac{4}{x-2} - 3$		
4.2	x=2	$\checkmark x = 2$	
	$ \begin{aligned} x &= 2 \\ y &= -3 \end{aligned} $	$\checkmark x = 2$ $\checkmark y = -3$	(2)
4.3	$y \in R$; $y \neq -3$	✓answer	(1)

4.4.1	For <i>y</i> -intercept, $x = 0$		
	$y = \frac{4}{-2} - 3$		
	$\begin{vmatrix} y \\ -2 \end{vmatrix}$	-1 -	
	=-5	✓ y – value	(1)
			(1)
4.4.2	For x -intercept, $y = 0$		
		$\checkmark y = 0$	
	$0 = \frac{4}{x-2} - 3$	✓x value	(2)
	10	- X value	
	$x = \frac{10}{3}$		
	3		
4.5			
	y ↑		
	y = 2		
	$\frac{1}{3}$		
	x	✓asymptotes	
		✓intercepts	
	y=-	✓shape	
	, , , , , , , , , , , , , , , , , , ,		
	_5		(2)
	-3/		(3)
	↓ \;		
	,		
4.6	(4; 2)	✓ x = 4	
		$\checkmark y = 2y$	(2)
			[12]

QUES	I IUN 5		
5.1	(x-3)(x+2)=0	✓factors	
	x = 3 or x = -2	✓ both x values	
	B(3;0)	✓B(3;0)	
	C(0; -6)	✓C(0; -6)	(4)
5.2	$a = \tan 45^{\circ}$	$\checkmark a = \tan 45^{\circ}$	
	=1	✓answer	(2)
5.3	v-0	v – 0	
	$\left \begin{array}{c} \underline{y-0} \\ 0-3 \end{array} \right = 1$	$\frac{3}{0-3}=1$	
	y = -3	→ 0−3	
	(0; -3)	$\sqrt{\frac{y-0}{0-3}} = 1$ $\sqrt{(0; -3)}$	
	(0, -5)	v (0, -3)	
	OR		
	y = ax + q	✓substitution	
	0 = (1)(3) + q	✓value of q	
	q = -3	_	
			(2)
			(2)
	CD 2 (C) 2	(CD - 2	(1)
5.4	CD = -3 - (-6) = 3	✓CD = 3	(1)
5.5	m=-1; lines are perpendicular.	$\checkmark m = -1$	(3)
	y = -x + c	✓ substitution of (3;0)	
	0 = -3 + c	✓equation	
	c=3		
	y = -x + 3		
5.6	$-2 < x < \frac{1}{2}$ or $x > 3$	$x=\frac{1}{2}$	(2)
	2	✓	(3)
		2 4 1 1	
		$ \sqrt{-2 < x < \frac{1}{2}} $	
		$\sqrt{x} > 3$	
		,	[15]
			[20]

OUESTION 6

	ESTION 6		
6.1	$9 = a^{-2}$	✓ substituting values of <i>x</i> and <i>y</i>	
	$a^2 = \frac{1}{9}$		
	$a=\pm\frac{1}{3}$	$\checkmark a = \pm \frac{1}{2}$	
	$\therefore a = \frac{1}{3}$	$\checkmark a = \pm \frac{1}{3}$ $\checkmark a = \frac{1}{3}$	(3)
	3	$\checkmark a = \frac{1}{3}$	
6.2	$y = \left(\frac{1}{3}\right)^x$		
		✓ interchange <i>x</i> and	
	$x = \left(\frac{1}{3}\right)^y$	y ✓ answer	
	$y = \log_{\frac{1}{3}} x$	diswei	(2)
6.3			
	↑ ^y		
	P(-2; 9)	✓ y = x	
		✓ shape of f^{-1}	
		✓ $(9; -2)$ on f^{-1}	
	\downarrow		
	(9; -2)		
	•		(3)
6.4	$x > 0, x \in \mathbb{R}$	✓ answer	(1)
6.5	g(x) = f(-x)	✓ substitution of $-x$	
	$g(x) = \left(\frac{1}{3}\right)^{-x}$	substitution of -x	
	$g(x) = 3^x$	$f(x) = 3^x$	(2)
6.6	$g(x) = 3^{x}$ $\log_{\frac{1}{3}} = -2$	✓ equating to -2	
	$x = \left(\frac{1}{3}\right)^{-2}$		
	$\begin{pmatrix} x = \left(\frac{1}{3}\right) \\ x = 9 \end{pmatrix}$	$\checkmark x = 9$	
	$\begin{vmatrix} x = 9 \\ 0 < x < 9 \end{vmatrix}$	✓ inequality	(3)
			[14]
		<u> </u>	[1]

QUL	QUESTION /			
7.1	$i_{eff} = (1 + \frac{0.13}{12})^{12} - 1$ $= 0.1380324816$ $r = 13.80\%$	✓ substitution ✓ <i>i</i> ✓ 13;80%	(3)	
7.2	A = P(1-i) ⁿ $ \frac{1}{2}x = x(1-0.07)^{n} $ $ \frac{1}{2} = (0.93)^{n} $ $ n = \log_{0.93} \frac{1}{2} $ $ n = 9,55 $ $ n = 9 \text{ years 6 month} $ $ n = 115 \text{ months} $	✓ P = $\frac{1}{2}A$ ✓ substitution into correct formula ✓ correct us of logs ✓ answer in months	(4)	
7.3.	$= 3000 \left(1 + \frac{0.07}{4}\right)^{4\times3} \left(1 + \frac{0.12}{2}\right)^{2\times4} + $ $4000 \left(1 + \frac{0.07}{4}\right)^{4\times1} \left(1 + \frac{0.12}{2}\right)^{2\times4} $ $= R12721,70$ Yes she will be able to afford	$ √3000 \left(1 + \frac{0,07}{4}\right)^{4 \times 3} $ $ √\left(1 + \frac{0,12}{2}\right)^{2 \times 4} $ $ √4000 \left(1 + \frac{0.07}{4}\right)^{4 \times 1} $ $ √\left(1 + \frac{0,12}{2}\right)^{2 \times 4} $ ✓ answer ✓ conclusion	(6)	
			[13]	

QUESTION 8

	7110110	
8.1	$f(x+h) = \frac{-2}{x+h}$	$\checkmark f(x+h)$
	$f'(x) = \lim_{x \to 0} \left(\frac{-\frac{2}{x+h} - \left(-\frac{2}{x}\right)}{h} \right)$	✓ substitution into correct formula
	$= \lim_{x \to 0} \frac{-2x + 2x + 2h}{x(x+h)} \times \frac{1}{h}$ $= \lim_{x \to 0} \frac{2h}{x} \times \frac{1}{h}$	$\checkmark \frac{-2x+2x+2h}{x(x+h)} \times \frac{1}{h}$
	$= \lim_{x \to 0} \frac{2h}{x(x+h)} \times \frac{1}{h}$	$\checkmark \frac{2}{x(x+h)}$ $\checkmark \text{answer}$

Copyright reserved

	N3C-Warking	Guideinie	
	$= \lim_{x \to 0} \frac{2}{x(x+h)}$ $= \frac{2}{x^2}$		(5)
8.2.1	$f'(x) = x - \frac{3}{10}$	$\checkmark\chi$ $\checkmark -\frac{3}{10}$	(2)
8.2.2	$= D_x \left[2x^{\frac{3}{2}} + \frac{1}{3}x^{-1} \right]$ $= 3x^{\frac{1}{2}} - \frac{1}{3}x^{-2}$	$\begin{array}{c} \checkmark 2x^{\frac{3}{2}} \\ \checkmark \frac{1}{3}x^{-1} \\ \checkmark 3x^{\frac{1}{2}} \end{array}$ Penalize 1 mark for notation $\begin{array}{c} \checkmark -\frac{1}{3}x^{-2} \end{array}$	(4)
8.2.3	$\frac{dy}{da} = 12x^3a^3 + 5xa^4$	$\sqrt{12x^3a^3}$ $\sqrt{5xa^4}$	(2)
			[13]

9.1.1	$ \begin{array}{c} & \xrightarrow{-1} \\ & \xrightarrow{-2} \\ & (3; -6) \end{array} $	✓ shape ✓ x-intercepts(-1; 0) and (5; 0) ✓ y-intercept (0; -2) ✓ minimum turning point at (3; -6)	(5)
9.1.2	Point of inflection $=\frac{-1+3}{2}$ = 1	✓ substitution ✓ answer	(2)
9.1.3	Increasing for $-1 < x < 3$	✓✓answer	(2)
			[9]

10.1	$h(0) = -(0)^2 + 6(0) + 16 = 16m$	√ 16m	(1)
10.2	h'(t) = -2t + 6	✓ derivative	(0)
	2t+6=0	$\checkmark h'(t) = 0$	(3)
	t=3	✓answer	
10.3	h'(t) = -2t + 6	✓second derivative	(1)
10.5		second derivative	
	$h''(t) = -2m/s^2$		
10.4	$0 = -t^2 + 6t + 16$	✓equating to zero	
	$t^2 - 6t - 16 = 0$		
	(t-8)(t+2)=0	√factors	
	t=8 or t=2		
		$\checkmark t = 8$	
	$\therefore t = 8$		(4)
	h'(8) = -2(8) + 6	✓substitution of 8 in	
	=-16 m/s	the correct equation	
			[9]

QUESTION 11

11.1.1	No, $P(AandB) \neq 0$	√No	
		✓ conclusion	(2)
11.1.2	P(A and B)' = 0.4 + x + y	✓✓answer	
			(2)
11.1.3	$P(AandB) = P(A) \times P(B)$	√formula	
	0.3 = (0.7)(0.3 + x)	✓substitution in correct	
	0.3 = 0.21 + 0.7x	formula	
	x = 0.128571	x = 0.13	
	x = 0.13		
	y = 1 - (4,4 + 0,3 + 0,13)	y = 0.17	
			(4)
1101	y = 0,17		
11.2.1	W	✓✓✓ for each branch	
	0,9		
	F $\overline{}$		
	0,7		
	0,1		
	0,45 W		
	0,3 UNE		
	0,55		
	0,55 _ Г		(3)
11.2.2	$0.9 \times 0.7 + 0.3 \times 0.45 = 0.765$	√method	(2)
		√answer	
			[13]
		✓answer	[13]

TOTAL: 150